Already a subscriber? - Login here
Not yet a subscriber? - Subscribe here

Browse by:


  • Issue: 1/2

Displaying: 1-20 of 39 documents


presentacion
1. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Miguel Sánchez-Mazas Los calculos lógicos de Leibniz a los 325 años de su Dissertatio de Arte Combinatoria
view |  rights & permissions | cited by
estudios
2. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Floy Andrews Doull Leibniz’s Logical System of 1686-1690
abstract | view |  rights & permissions | cited by
Logical works of this period, beginning with Generales Inquisitiones and ending wi th the two dated pieces of 1 Aug. 1690 and 2 Aug. 1690 , are read as a sustained effort, finally successful, to develop a set of axioms and an appropriate schema for the expression of categorical propositions faithful to traditional syllogistic. This same set of axioms is shown to be comprehensive of the propositional calculus of Principia Mathematica, providing that ‘Some A is A’ is not a thesis in an unrestricted sense. There is no indication in the works of this period that Leibniz understood just how significant is this logicalsystem he developed. But it is undeniable that he held tenaciously to this particular set of axioms throughout the period, a set of axioms of great power.
3. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Javier Echeverría Cálculos Geométricos en Leibniz
abstract | view |  rights & permissions | cited by
In a letter of September 1679 to Huygens, Leibniz proposed a calculus situs directly applicable to geometric relations without use of magnitudes. His researehes on this kind of Geometric Calculus were developed along all his life but, unfortunately, only a few Leibniz’ s writings on these matters had been published by Gerhardt and Couturat. They were closely connected to his own researches on Logic Calculus. From a chronological point of view, the unpublished manuscript Circa Geometrica Generalia (CGG) (1682) may be considered as the third most important Leibniz’ contribution on Calculus Situs. CGG summarizes several results obtained by Leibniz from 1679 to 1682 and contains some interesting ideas concerning set theory, geometric axioms, General Topology (connexion, frontier, continous transformations, etc.) and Logic Foundations of Geometry.En una carta a Huygens escrita en septiembre de 1679, Leibniz propuso un calculus situs que fuese aplicable al estudio directo de las relaciones geometricas, sin utilizar magnitudes. Sus investigaciones en torno a los Cálculos Geometricos continuaron a lo largo de toda su vida, pero, lamentablemente, Gerhardt y Couturat sólo publicaron una pequeña parte de sus manuscritos sobre estos temas. Estasinvestigaciones estuvieron estrechamente conectadas con los trabajos de Leibniz sobre Cálculos Lógicos. El manuscrito inédito Circa Geometrica Generalia (1682) puede ser considerado, desde un punto de vista cronológico, como la tercera más importante contribución de Leibniz al Calculus Situs. En CGG Leibniz resume varios logros obtenidos desde 1679 hasta 1682 y expone ideas interesantes en relación con la Teoría de Conjuntos, los axiomas de la geometria, la Topologia General (conexión, frontera, transformaciones continuas, ete.) y los fundamentos logicos de la Geometría.
4. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
G. W. Leibniz Circa Geometrica Generalia Et Calculum Situs Seu Picturam Characteristicam Observationes Miscellae Constituendae Analysi Geometricae Plane Novae Praeludentes
view |  rights & permissions | cited by
5. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Tomás Guillén Vera La polémita sobre lo innato en el libro I de los ‘Nuevos Ensayos’
abstract | view |  rights & permissions | cited by
Leibniz’s Noveaux Essays are the exercise of a systems dialogue. It is in the first book, when he speaks about innate ideas, where its bases are set, and there Leibniz propounds the basic ideas of his controversy against Locke. Leibniz is convinced that his system is more perfect than Locke’s one and that, if Locke solved his contradictions, he would approach his own system. The hidden aim of the Noveaux Essays redaction is placed beyond a system dialogue, and it can be seen in it the existence of a vast political dialogue whose purpose is the European unity.
6. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Wolfgang Lenzen Leibniz on privative and primitive terms
abstract | view |  rights & permissions | cited by
We first present an edition of the manuscript LH VII, B 2, 39 in which Leibniz develops a new formalism in order to give rigorous definitions of positive, of privative, and of primitive terms.This formalism involves a symbolic treatment of conceptual quantification which differs quite considerably from Leibniz’s “standard” theory of “indefinite concepts” as developed, e.g., in the “General Inquirles” In the subsequent commentary we give an interpretation and a critical evaluation of Leibniz’s symbolic apparatus. It turns out that the definition of privative terms and primitive terms lead to certain inconsistencies which, however, can be avoided by slight modifications.
7. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Javier de Lorenzo Leibniz-Frege, ¿utopías de la razón conceptual?
abstract | view |  rights & permissions | cited by
The dream of Leibniz and that of Frege, to create a lingua characteristica in order to demonstrate conceptual thought, incorporates in a wider process, the division and tension between the distinct Spheres which the human sub-species have been creating. Spheres which remain hidden by natural language, essentially spoken language. For the creation and demonstration of the Conceptual Sphere the establishing of a language of characteres has become indispensable, essentially written language. Is a consequence a tension is established between Natural language-Formal language with their corresponding reductionist tendences.
8. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Jesús Padilla-Gálvez Las lógicas modales en confrontación con los conceptos básicos de la lógica modal de G. W. Leibniz
abstract | view |  rights & permissions | cited by
This article is divided into introduction andd three section. In the first section we examine Leibniz’ termini necesitas-possibilitas. In the second section we propose a minimal modal logic, LLM, arise from the addition of modal priciples. Finally in the last section we examine his complex studie towards the interpretation of modal language in the possible worlds. The resulting interplay between the minimal modallogic and the possible worlds perspective is one of the main charms of semantics.
9. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Lorenzo Peña De la logique combinatoire des ‘Generales Inquisitiones’ aux calculs combinatoires contemporains
abstract | view |  rights & permissions | cited by
In his 1686 essay GI Leibniz undertook to reduce sentences to noun-phrases, truth to being. Such a reduction arose from his equating proof with conceptual analysis. Within limits Leibniz’s logical calculus provides a reasonable way of surmounting the dichotomy, thus allowing a reduction of hypothetical to categorical statements. However it yields the disastrous result that, whenever A is possible and so is B, there can be an entity being both A and B. Yet, Leibniz was in the GI the forerunner of 20th century combinatory logic, which (successfully!) practices - sometimes for reasons not entirely unlike Leibniz’s own grounds - reductions of the same kinds he tried to carry out.
10. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Jaime de Salas Ortueta La verdad del otro y la práctica ecuménica en Leibniz
abstract | view |  rights & permissions | cited by
It is possible to describe certain basic principles that underlie Leibniz’s political activities. These principles do not literally determine the specific steps Leibniz takes, but play a much more decisive role than that due to mere metaphysical principles. They provide a general frame work for his activities and a point of reference towards which his reflections tend. Particular attention is paid here to the concept of perspective and its presence in Leibniz’s correspondence with Bossuet, Pellison and Madame de Brinon and the way in which a theological dialogue enables Leibniz to develop his vision of reality.
11. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Miguel Sánchez-Mazas Actualisation, développement et perfectionnement des calculs logiques arithmético-intensionnels de Leibniz
abstract | view |  rights & permissions | cited by
In the parts I and II of this paper, the Author shows:1. how Leibniz’s arithmetico-intensional logical calculi of April 1679 can be completed and transformed in an intensional Boolean algebra (U, v, &:, -, e, -e) admitting, on the one hand, two different logical interpretations:li1: as a complete and consistent calculus of terms (properties) and syllogistic;li2: as a deontic first-order calculus and, on the other hand, two different arithmetical interpretations:ai1: as a numerical Boolean algebra (DM, lcm, ged, M/..., 1, M) of all divisors of a natural number M;ai2: as a numerlcal Boolean algebra (BA, lcbc, gcbc, A-..., 0, A) of all binary components of a natural number A.Arithmetical representations of negation of a term x and of combination (intensional conjunction) and alternative (intensional disjunction) of two or more terms are respectively M/x, lcm (lower common multiple) and gcd (greatest common divisor) in the first Boolean algebra (ai1) and A-x, lcbc (lower common binary composite) and gcbc (greatest common binary component) in the second one (ai2).2. that, in this context, each possible world U of 2ⁿ elements (terms, acts) can be defined on the basis on n elements of U choosen as “saturated” (intensionally maximal, but possible) in U or, inversely, on the basis of n elements of U choosen as “primitive” (intensionally minimal, but not-universal) in U. In fact, each possible element of U can be defined now as an alternative of saturated elements of U, now as a combination of primitive (opposite to saturated) elements of U; all combinations of saturated elements of U being equivalent to the impossible element (-e, non-entity, resp. impossible act) of U and an alternatives of elements of U being equivalent to the universal element (e, entity, resp. possible act) of U.In the arithmetical representation of each possible world U, the maximal number M (for ai1) or A (for ai2) represents the impossible (non existent) element of U. Now, each possihle world defined by n saturated (resp. primitive) elements can be automatically enlarged (restricted) by the introduction (suppression) of m new (old) saturated (resp. primitive) elements, producing a new possible world U’ where m impossible elements (centaur, pegasus, syren, unicorn, etc.) of U become possible elements of U’ or inversely.After this first type of arithmetical representation of logical calculi, where the terms are -as in Leibniz’s 1679 calculi- represented by natural numbers and the propositions by equations (for universal resp. prescriptive) or inequations (for particular, resp. permissive), in the part III the Author presents a second type of arithmetical representation where propositions are represented by natural numbers and the valid (classical or deontic) syllogisms by true arithmetical relations between the numbers of premisses and the number of conclusion. Here the entire syllogistic adopts the form of a multiplication table wherea syllogism is valid if and only if the lcm (in ai1 ) or the lcbc (in ai2) of the characterlstic numbers of the premisses is a multiple (in ai1) or a binary composite (in ai2) of the characteristic number of the conclusion.
libros y revistas
12. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Jesús Padilla-Gálvez The Leibniz Renaissance: International Workshop (Firenze 2-5 giurno 1986)
view |  rights & permissions | cited by
13. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Alberto Gutiérrez Martínez Ciencia y Tecnología
view |  rights & permissions | cited by
14. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
J. Ramón Arana Marcos La trama de la demostración (Los griegos y la razón tejedora de pruebas)
view |  rights & permissions | cited by
15. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
K. Korta, Jesus Ma Larrazabal The Situation in Logic
view |  rights & permissions | cited by
16. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
X. Arrazola Reasoning with Incomplete Information
view |  rights & permissions | cited by
17. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
José Luis Falguera Cuatro obras recientes sobre estructuras de las teorfas científicas
view |  rights & permissions | cited by
18. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
César Gárate An Introduction to Default Logic
view |  rights & permissions | cited by
19. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
A.-E. Pérez Luño Storie di automi: Dalla Grecia classica alla Belle Épogue
view |  rights & permissions | cited by
20. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 6 > Issue: 1/2
Femando Migura The Liar: An Essay on Truth and Circularity
view |  rights & permissions | cited by