Already a subscriber? - Login here
Not yet a subscriber? - Subscribe here

Browse by:



Displaying: 61-80 of 1671 documents


articles
61. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 3
Bruno Borge Realismo estructural epistémico, modalidad y leyes de la naturaleza
abstract | view |  rights & permissions | cited by
El realismo estructural epistémico (REE) afirma que el conocimiento que nos brindan las teorías científicas es acerca de la estructura del mundo inobservable, y no sobre su naturaleza. La objeción más importante que esta posición ha enfrentado es el llamado problema de Newman. En el presente trabajo ofrezco una objeción alternativa al REE. Sostengo que su formulación conduce a posiciones escépticas indeseables en dos campos próximos al realismo científico: los debates sobre la modalidad y las leyes de la naturaleza. Muestro además que hay un sentido interesante en el que mi objeción es más fuerte que la formulada por Newman.
monographic section
62. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 3
Genoveva Martí Guest editor’s presentation
view |  rights & permissions | cited by
63. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 3
Robin Jeshion Katherine and the Katherine: On the syntactic distribution of names and count nouns
abstract | view |  rights & permissions | cited by
Names are referring expressions and interact with the determiner system only exceptionally, in stark contrast with count nouns. The-predicativists like Sloat, Matushansky, and Fara claim otherwise, maintaining that syntactic data indicates that names belong to a special syntactic category which differs from common count nouns only in how they interact with ‘the’. I argue that the-predicativists have incorrectly discerned the syntactic facts. They have bypassed a large range of important syntactic data and misconstrued a critical data point on which they ground the-predicativism. The right data offers new compelling syntactic grounds for referentialism.
64. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 3
Robert Stalnaker Diagnosing sorites arguments
abstract | view |  rights & permissions | cited by
This is a discussion of Delia Fara’s theory of vagueness, and of its solution to the sorites paradox, criticizing some of the details of the account, but agreeing that its central insight will be a part of any solution to the problem. I also consider a wider range of philosophical puzzles that involve arguments that are structurally similar to the argument of the sorites paradox, and argue that the main ideas of her account of vagueness helps to respond to some of those puzzles.
65. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 3
Timothy Williamson Supervaluationism and good reasoning
abstract | view |  rights & permissions | cited by
This paper is a tribute to Delia Graff Fara. It extends her work on failures of meta-rules (conditional proof, RAA, contraposition, disjunction elimination) for validity as truth-preservation under a supervaluationist identification of truth with supertruth. She showed that such failures occur even in languages without special vagueness-related operators, for standards of deductive reasoning as materially rather than purely logically good, depending on a context-dependent background. This paper extends her argument to: quantifier meta-rules like existential elimination; ambiguity; deliberately vague standard mathematical notation. Supervaluationist attempts to qualify the meta-rules impose unreasonable cognitive demands on reasoning and underestimate her challenge.
book reviews
66. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 3
Fernando Rudy Hiller Building better beings: A theory of moral responsibility
view |  rights & permissions | cited by
67. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 3
Summary
view |  rights & permissions | cited by
68. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 3
Contents of Volume 33
view |  rights & permissions | cited by
monographic section i
69. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 2
Mary Leng Guest Editor’s Introduction: Updating indispensabilities: Putnam in memoriam
view |  rights & permissions | cited by
70. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 2
Concha Martínez Vidal Putnam and contemporary fictionalism
abstract | view |  rights & permissions | cited by
Putnam rejects having argued in the terms of the argument known in the literature as “the Quine-Putnam indispensability argument”. He considers that mathematics contribution to physics does not have to be interpreted in platonist terms but in his favorite modal variety (Putnam 1975; Putnam 2012). The purpose of this paper is to consider Putnam’s acknowledged argument and philosophical position against contemporary so called in the literature ‘fictionalist’ views about applied mathematics. The conclusion will be that the account of the applicability of mathematics that stems from Putnam‘s acknowledged argument can be assimilated to so-called ‘fictionalist’ views about applied mathematics.
71. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 2
José Miguel Sagüillo Hilary Putnam on the philosophy of logic and mathematics
abstract | view |  rights & permissions | cited by
This paper focuses on Putnam’s conception of logical truth as grounded in his picture of mathematical practice and ontology. Putnam’s 1971 book Philosophy of Logic came one year later than Quine’s homonymous volume. In the first section, I compare these two Philosophies of Logic which exemplify realist-nominalist viewpoints in a most conspicuous way. The next section examines Putnam’s views on modality, moving from the modal qualification of his intuitive conception to his official generalized non-modal second-order set-theoretic concept of logical truth. In the third section, I emphasize how Putnam´s “mathematics as modal logic” departs from Quine’s “reluctant Platonism”. I also suggest a complementary view of Platonism and modalism showing them perhaps interchangeable but underlying different stages of research processes that make up a rich and dynamic mathematical practice. The final, more speculative section, argues for the pervasive platonistic conception enhancing the aims of inquiry in the practice of the working mathematician.
72. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 2
Otávio Bueno Putnam’s indispensability argument revisited, reassessed, revived
abstract | view |  rights & permissions | cited by
Crucial to Hilary Putnam’s realism in the philosophy of mathematics is to maintain the objectivity of mathematics without the commitment to the existence of mathematical objects. Putnam’s indispensability argument was devised as part of this conception. In this paper, I reconstruct and reassess Putnam’s argument for the indispensability of mathematics, and distinguish it from the more familiar, Quinean version of the argument. Although I argue that Putnam’s approach ultimately fails, I develop an alternative way of implementing his form of realism about mathematics that, by using different resources than those Putnam invokes, avoids the difficulties faced by his view.
73. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 2
Sorin Bangu Indispensability, causation and explanation
abstract | view |  rights & permissions | cited by
When considering mathematical realism, some scientific realists reject it, and express sympathy for the opposite view, mathematical nominalism; moreover, many justify this option by invoking the causal inertness of mathematical objects. The main aim of this note is to show that the scientific realists’ endorsement of this causal mathematical nominalism is in tension with another position some (many?) of them also accept, the doctrine of methodological naturalism. By highlighting this conflict, I intend to tip the balance in favor of a rival of mathematical nominalism, the mathematical realist position supported by the ‘Indispensability Argument’ —but I do this indirectly, by showing that the road toward it is not blocked by considerations from causation.
74. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 2
Susan Vineberg Mathematical explanation and indispensability
abstract | view |  rights & permissions | cited by
This paper discusses Baker’s Enhanced Indispensability Argument (EIA) for mathematical realism on the basis of the indispensable role mathematics plays in scientific explanations of physical facts, along with various responses to it. I argue that there is an analogue of causal explanation for mathematics which, of several basic types of explanation, holds the most promise for use in the EIA. I consider a plausible case where mathematics plays an explanatory role in this sense, but argue that such use still does not support realism about mathematical objects.
75. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 2
Matteo Plebani The indispensability argument and the nature of mathematical objects
abstract | view |  rights & permissions | cited by
Two conceptions of the nature of mathematical objects are contrasted: the conception of mathematical objects as preconceived objects (Yablo 2010), and heavy duty platonism (Knowles 2015). It is argued that some theses defended by friends of the indispensability argument are in harmony with heavy duty platonism and in tension with the conception of mathematical objects as preconceived objects.
monographic section ii
76. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 2
María de Paz, José Ferreirós Guest Editors’ Introduction: From basic cognition to mathematical practice
view |  rights & permissions | cited by
77. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 2
Rafael Núñez Praxis matemática: reflexiones sobre la cognición que la hace posible
abstract | view |  rights & permissions | cited by
La matemática forma un cuerpo único de conocimiento. Entre otras cosas, es abstracta, exacta, eficaz, simbolizable y proporciona sorprendentes aplicaciones al mundo real. En el campo de la filosofía de la matemática el estudio de la práctica matemática ha devenido gradualmente una importante área de investigación. ¿Qué aspectos de la mente y el cuerpo humano hacen posible la particular práctica matemática? En este artículo, reviso brevemente algunas dimensiones cognitivas que juegan un papel crucial en la creación y consolidación de la matemática.
78. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 2
Markus Pantsar Early numerical cognition and mathematical processes
abstract | view |  rights & permissions | cited by
In this paper I study the development of arithmetical cognition with the focus on metaphorical thinking. In an approach developing on Lakoff and Núñez (2000), I propose one particular conceptual metaphor, the Process → Object Metaphor (POM), as a key element in understanding the development of mathematical thinking.
79. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 2
Roy Wagner Cognitive stories and the image of mathematics
abstract | view |  rights & permissions | cited by
This paper considers two models of embodied mathematical cognition (a modular model and a dynamic model), and analyses the image of mathematics that they support.
80. Theoria. Revista de Teoría, Historia y Fundamentos de la Ciencia: Volume > 33 > Issue: 2
José Ferreirós, Manuel J. García-Pérez ¿«Natural» y «euclidiana»?: Reflexiones sobre la geométrica práctica y sus raíces cognitivas
abstract | view |  rights & permissions | cited by
Se discutirán críticamente algunas tesis recientes sobre cognición geométrica, específicamente la tesis de la universalidad planteada por Dehaene et al., y la idea de una “geometría natural” empleada por Spelke. Argumentaremos la necesidad de distinguir entre cognición visuo-espacial y conocimiento geométrico básico, y más aún, afirmaremos que este último no se puede identificar con la geometría euclidiana. El propósito principal del artículo es proponer una caracterización de la geometría básica, para lo cual se requiere una combinación de experimentos en cognición visuo-espacial con estudios en arqueología cognitiva e historia comparativa. Ofreceremos ejemplos de estos campos, con especial énfasis en la comparación de ideas y procedimientos geométricos de la antigua China y Grecia.